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ABSTRACT 

The Light Water Reactor Sustainability Program was initiated to evaluate technologies that could be 
used to perform online monitoring of piping and other secondary system structural components in 
commercial nuclear power plants. These online monitoring systems have the potential to identify when a 
more detailed inspection is needed using real-time measurements, rather than at a pre-determined 
inspection interval. 

This transition to condition-based, risk-informed automated maintenance will contribute to a 
significant reduction of operations and maintenance costs that account for most nuclear power generation 
costs. 

This report describes the current state of research related to ultrasonic-guided wave testing and its 
application to detecting defects in commercial nuclear power plants. The report analyzes the applicability 
of the guided wave technology to secondary piping systems, as well as studying the potential for 
expanding the range of guided wave technology to include bent piping and other piping components. The 
ultrasonic-guided waves can inspect long stretches of straight piping; however, more complex geometries 
such as elbows, welds, and tees are causing spurious reflections and coherent noise, which significantly 
decreases the sensitivity of the technique. To deal with these limitations, high-definition fiber optic 
sensors are applied to complex piping geometries, and advanced machine learning algorithms are used to 
detect deviations from healthy states. 

This report also analyzes the performance of advanced signal processing and machine learning-based 
pattern recognition algorithms in detecting defects in secondary structures. It is demonstrated on guided 
wave data collected at nuclear power plants that the independent component analysis can separate 
different coherent noise components and segregate them from useful signals. It also demonstrates that 
advanced machine learning techniques, such as neural networks, support vector machines, and deep 
learning networks, can detect minor defects present in inspected structures. 

Recommendation about the applicability of advanced machine learning techniques to online piping 
monitoring are also given. 
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SUMMARY 

This report describes the performance of advanced signal processing and machine learning techniques 
to detect corrosion degradation in secondary structures using ultrasonic-guided wave testing and high-
resolution fiber optic in nuclear power plants (NPPs), which is being conducted under the United States 
(U.S.) Department of Energy’s (DOE’s) Light Water Reactor Sustainability (LWRS) Program. 

The LWRS Program, funded by DOE’s Office of Nuclear Energy (DOE-NE), aims to provide 
scientific, engineering, and technological foundations for extending the life of operating light water 
reactors (LWRs). This program involves several goals, one of which is ensuring the safe operation of the 
passive components in NPPs, such as concrete, piping, steam generators, heat exchangers, and cabling. 

Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems 
Technologies Pathway conducts targeted research and development (R&D) to address aging and 
reliability concerns with the legacy analog instrumentation systems, structures, and components (SSCs) 
and related information systems of the operating U.S. LWR fleet. This work involves two major goals: 
(1) ensuring legacy analog II&C systems are not life-limiting issues for the LWR fleet, and 
(2) implementing digital II&C technology in a manner that enables broad innovation and business 
improvement in the NPP operating model. Resolving long-term operational concerns with II&C systems 
contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and 
environmental security. 

The goals of the LWRS Program are addressed through a number of pilot projects that target realistic 
opportunities for increasing sustainability, safety, and economic efficiency of the existing NPP fleet. It is 
generally recognized that the biggest challenge for existing NPPs is economic viability. Reducing 
operations and management costs are one of the most pressing problems facing the nuclear power 
generation industry. Operations and maintenance costs comprise approximately 60–70% of the overall 
generating cost in legacy NPPs. Only 15–30% of the costs are attributed to obtaining and producing the 
fuel. 

Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor 
costs. To address the issue of rising operating costs and economic viability, companies that operate the 
national nuclear energy fleet started the “Delivering the Nuclear Promise Initiative” in 2016, which is a 
three-year program aimed at maintaining operational focus, increasing value, and improving efficiency. 
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1. ULTRASONIC-GUIDED WAVE TESTING 

The United States (U.S.) Department of Energy’s (DOE’s) Light Water Reactor Sustainability 

(LWRS) Program, funded by DOE’s Office of Nuclear Energy (DOE-NE), aims to provide scientific, 

engineering, and technological foundations for extending the life of operating light water reactors 

(LWRs). This program involves several goals, one of which is ensuring the safe operation of the passive 

components in nuclear power plants (NPPs), such as concrete, piping, steam generators, heat exchangers, 

and cabling. 

Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems 

Technologies Pathway conducts targeted research and development (R&D) to address aging and 

reliability concerns with the legacy analog instrumentation systems, structures, and components (SSCs) 

and related information systems of the operating U.S. LWR fleet. This work involves two major goals: 

(1) ensuring legacy analog II&C systems are not life-limiting issues for the LWR fleet, and 

(2) implementing digital II&C technology in a manner that enables broad innovation and business 

improvement in the NPP operating model. Resolving long-term operational concerns with II&C systems 

contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and 

environmental security. 

This report describes the application of independent component analysis (ICA) and machine learning 

(ML)-based advanced pattern recognition techniques to detect corrosion-induced defects in commercial 

NPPs and analyzes the applicability and benefits of ICA and ML techniques when applied to guided wave 

(UGW) technology and fiber optic sensors to detect corrosion in secondary circuits, as well as studying 

the potential for expanding the range of UGW technology to include complex geometries and piping 

components using fiber optic sensors. UGWs can inspect long stretches of straight piping; however, more 

complex geometries that include elbows, welds, and tees can cause spurious reflections and coherent 

noise, which significantly decreases the sensitivity of UGW systems. The potential of ICA and ML to 

improve detection sensitivity is analyzed and practical recommendations are provided. It is demonstrated 

on UGW data collected at a commercial NPP that ICA, under certain conditions, can separate different 

coherent noise components and has the potential for improving signal-to-noise ratio. Different advanced 

pattern recognition techniques are applied to UGW and fiber optic sensors to evaluate their ability to 

detect different types of defects in secondary piping. 

The transition to condition-based, risk-informed automated maintenance will contribute to a 

significant reduction in operations and maintenance costs accounting for approximately 66% of the total 

operating cost of NPPs. These costs are significantly higher in comparison to gas (13%) and coal plants 

(22%) [1]. To deal with the issue of increasing operating costs and economic sustainability, companies 
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that operate the national nuclear energy fleet started the “Delivering the Nuclear Promise Initiative” [2] in 

2016, which is a three-year program aimed at maintaining operational focus, increasing value, and 

improving efficiency. While stressing the industry’s commitment to safety and security, the initiative also 

emphasized economic viability and competitiveness in the current deregulated energy market. 

As a means of defect detection technology, UGW testing has been successfully implemented in the 

field of non-destructive examination (NDE) for several years now [3,4,5]. The velocity of the guided 

waves (GWs) is directly dependent on the thickness of the material, which is characterized by the 

dispersion behavior of the modes of the GWs. Hence, the difference in the thickness of the component 

will give a variation in the time of GW arrival, which forms the physics foundation of UGW detection 

and monitoring systems. 

Tests conducted by the Imperial College in London [5] have proved the applicability of the utilization 

of shear horizontal (SH) waves for calculating the average thickness of a plate along a line between two 

transducers. This work also helped generate a methodology for extracting the value of the thickness 

measured by SH GW signals, which were characterized by temperature. However, application of GWs to 

the piping systems of NPPs face additional serious challenges, such as complex geometric shapes, hostile 

environments, and insulation. 

The piping system is one of the most valuable assets in legacy NPPs, with inspections performed on a 

regular basis. The technical basis for the inspection period could be based on analytical predictive 

analysis, plant operating experience, industry experience, susceptibility of the equipment, engineering 

judgment, and acoustical or vibration measurements. However, because of the significant length of the 

piping systems, the problem of identifying specific piping components that need to be inspected during an 

outage remains a challenge. Thus, many unnecessary inspections are performed, which adds to planned 

downtime and lost revenue. The well-established technology of UGWs offers new possibilities in the 

inspection of large portions of piping systems with few sensors. UGWs are mechanical or elastic waves 

that propagate at low frequencies—either sonically or ultrasonically through the walls of a pipe—and are 

bounded and guided by those walls. The velocity and wave modes of GWs are strongly influenced by the 

geometry of the guiding boundaries. In the pipe, the UGWs exist in three different wave modes—

longitudinal, torsional, and flexural. Because the UGWs are mechanical waves, they are generated either 

through piezoelectric or magnetostrictive transducers that convert electrical magnetic fields into 

mechanical energy. Once the mechanical wave is generated with a set of piezoelectric or magnetostrictive 

sensors arranged in a collar around the pipe, it is transmitted through the walls of the pipe and reflected 

back from any discontinuities (e.g., flaws) of the surface of the wall, as shown in Figure 1. 
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Figure 1. The principle of GW corrosion monitoring (figure source [4]). 

UGW inspection has numerous advantages over other NDE techniques, which include: 

• the ability to inspect large sections of piping with a single sweep 

• the ability to inspect inaccessible locations 

• the flexibility of its sensors to be mounted permanently 

• the option that it may be used for inspection while the system is operating 

• the ability to inspect pipes from 2–96-in. diameter. 

The main advantage of GW inspections over conventional ultrasonic testing (UT) inspections is 

shown in Figure 2. In contrast to conventional UT inspections, GW technology can cover tens of meters 

in one inspection session. Traditional UT inspections are highly localized and can only detect flaws 

within the proximity of the sensor location. 

 

Figure 2. Differences between GW inspections and conventional UT inspections (figure source [4]). 

Despite these benefits, GW technology is challenged when applied to power plants in general and 

NPPs in particular. Piping systems in electric power plants come in various configurations and 

geometries; for example, they have thousands of elbows, bends, tees, valves, and flanges. These 

geometries are not a friendly media for GWs. Geometries other than strait pipe attenuate and distort GWs, 

thereby making inspections beyond them difficult. Also, while being a perfect tool for locating the 

damage in pipes, GWs cannot determine the size of the flaw with acceptable accuracy. In summary, 

provided the GW technology can overcome the limitations of complex geometries, it is the perfect tool 

for answering the “where to inspect?” question. 
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2. ICA APPLICATIONS TO GW SIGNALS COLLECTED ON A HEAT 
EXCHANGER SHELL 

As a mean to detect defects, GW testing has been successfully implemented in the NDE field [6]. The 

major advantage of this technology is its ability to cover large stretches of metal structures from a single 

location. The detection range of a single sensor location extends a few hundred feet in both directions 

from the sensor location. 

The large detection coverage also makes it economically viable to permanently install UGW systems 

for continuous online monitoring. The UGW systems are traditionally applied as inspection tools where 

the system is installed, measurements are taken, and the system is moved to a different location. Recent 

developments in technology, however, allow permanent installation, thus significantly reducing logistics 

of the inspections eliminating insulation removal and scaffolding. 

The UGWs are mechanical waves, which are generated either through piezoelectric or 

magnetostrictive transducers converting electrical magnetic fields into mechanical energy. 

Magnetostrictive materials are able to convert the magnetic field into kinetic energy or mechanical stress, 

while piezoelectric materials convert the electric field into mechanical stress or mechanical wave. For 

wave generation, the magnetostrictive method relies on the Joule effect [7], while for wave detection, it 

relies on the Villari effect [7]. 

Both techniques have their advantages and disadvantages and are widely used to generate mechanical 

waves for the purpose of off-line NDE inspections. Both approaches are capable of generating low-

frequency (10–100 kHz) waves, which include an audible range to avoid attenuation during propagation 

though inspected structures. Both methods generate one of three types of GWs: torsional, longitudinal, 

and flexural modes. 

These three modes interact with the discontinuities in a metallic structure and are reflected back to the 

sensor from those discontinuities, thus pinpointing the location of structural degradation. The longitudinal 

and torsional waves are the most widely used for NDE due to their sensitivity to defects. Longitudinal 

waves propagate along the object with compression and rarefication, while torsional waves propagate as a 

result of a medium being twisted and released. 

The data used in this report were obtained with a magnetostrictive system (MsS) developed at 

Southwest Research Institute (SwRI) [8,9]. The MsS structural health monitoring system has been 

developed at SwRI in collaboration with the Electric Power Research Institute (EPRI) to monitor 

corrosion in large secondary structures of NPPs [8,9]. The description of the MsS provided in this section 

follows descriptions presented in [8,9]. The block diagram of the MsS is shown in Figure 3. Two major 
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parts of the system are MsSs and an MsSR3030 unit. The unit works in pulse-echo mode by generating 

and receiving GWs through MsSs. The system has 17 sensors that are attached to the structure being 

tested (e.g., the heat exchanger shell). 

 

Figure 3. Block diagram of the MsS monitoring system (figure source [8]). 

The system also has a multiplexer and control computer. The multiplexer makes it possible to connect 

multiple sensors to a single MsSR3030 unit. The MsS can generate and detect waves propagating in both 

directions from the sensor, and is designed to generate SH torsional GW modes, which are nondispersive 

and make it possible to calculate the location of the echo’s source through the time of flight [8]. 

SwRI was allowed to install the MsS corrosion monitoring system on the shell of a low-pressure 

feedwater heater at one of the commercial nuclear generating stations. 

The system collected monitoring data for 747 days between January 27, 2011, and February 12, 2013. 

The data were collected once a day from all 17 sensors. The timeline of daily data collection is shown in 

Figure 4. Data collection was intermittent between April and August 2012 because the system was 

deactivated for short periods of time for computer repairs. In August 2012, data collection stopped 

completely, and resumed in December 2012. The sensor layout on the heat exchanger shell is shown in 

Figure 5, which depicts the cylindrical part of the heat exchanger if it were laid flat on a plate [9]. Three 

of the 20 planned sensors could not be installed due to issues with insulation removal; the remaining 

sensors are numbered from 4 to 20. Of the 17 sensors, seven are positioned to direct the wave 
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circumferentially, while 10 are positioned to direct the wave axially. This was done to improve 

volumetric coverage of the shell area under investigation. One of the circumferential sensors, No. 17, 

failed due to demagnetization shortly after installation and was out of service for the duration of data 

collection [9]. The sensors are indicated in Figure 5 by light green rectangles with numbers. Two large 

dark brown-green circles in the middle indicate inlet nozzles. Other dark brown-green circles and 

rectangles represent piping and structural components. For the circumferential sensors, the beam may 

travel around the shell multiple times, thus producing multiple reflections of the same feature. By feature, 

it is meant that any structural, geometric, engineering, or degradation discontinuity can produce a 

reflection. Figure 6 shows different ways the beam can travel around the shell circumferentially. The 

circumference of the shell is 167.8 in., while the length is 534 in. 

 

Figure 4. Data collection timeline. 

 

Figure 5. Sensor layout on heat exchanger shell (figure source [8]). 

 

Figure 6. Three different ways a wave can travel circumferentially around the shell propagating in one 
direction. The sensor is shown as the green rectangle, the feature is the red circle, the pulse is blue, and 
the echo is red (figure source [8]). 
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The volumetric beam coverage for circumferentially oriented sensors is shown in Figure 7. It can be 

seen that the beam coverage for some of those sensors overlap significantly, meaning that the same 

feature will be registered on adjacent sensors. This means that the data from those sensors can be 

processed as a group, which is very important while applying ICA because one of the fundamental 

assumptions is that different sensors receive information from the same source. For this report, only data 

from circumferential sensors were analyzed. 

 

Figure 7. Beam coverage for circumferential sensors (figure source [8]). 

2.1 Independent Component Analysis and Blind Source Separation 

For UGW to be a competitive technology in the nuclear industry, it needs to overcome several 

shortcomings, such as low sensitivity to minor degradation, dependence on geometry, and a low signal-to-

noise ratio (SNR) in a heavily degraded environment. This report aims to address the low SNR by 

applying advanced signal processing and pattern recognition techniques capable of dealing with coherent 

noise, which is endemic in UGW systems, and low SNR. 

The echo signals recorded with UGW systems usually consist of several peaks that correspond to 

reflections from different features of the structure under inspection, such as welds, supports, elbows, or 

areas of corrosion and erosion. In addition to these peaks, there is background noise that mainly happens 

due to the following reasons: (a) the material will usually exhibit low-level surface roughness that is 

caused by the interaction of the ultrasonic signal with the structure; and (b) ultrasonic mode conversions. 

When the ultrasound interacts with a feature, coating, or surface roughness, some of the energy will 

be converted into different wave modes. If a mode is dispersive, it will contribute to the background 

signal (noise) as it spreads out in time and space. This is sometime called shadowing. 

Ideally, a UGW technique will only transmit the non-dispersive wave modes; however, interaction of 

the ultrasonic wave modes with non-axisymmetric features of the structure can lead to mode conversions. 

This results in the generation of dispersive wave modes (DWMs). To increase the defect sensitivity and 

improve the SNR of reflection from features, it is important to filter out the DWM as much as possible. 
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The background noise produced by dispersion is coherent (non-random) and overlaps in the frequency 

domain with the signal of interest. Since the DWM is non-random, it cannot be tackled through averaging 

or other noise-reducing techniques. Conventional filtering techniques, such as low-pass and high-pass 

filtering or averaging, are also unable to reduce this non-random narrow-band background noise. 

ICA is a technique that can deal with non-random coherent noise. This technique uses knowledge of 

the dispersion characteristics of the wave mode, such as non-Gaussianity, and deconvolves signals in the 

time domain. It does not rely on frequency characteristics, but rather on statistical properties of signal and 

noise. This technique is an extension of a traditional statistical method—principal component analysis 

(PCA) [10]—and extends it to the independent signals, while traditional PCA can only tackle 

uncorrelated signals. In the case of Gaussian random variables, independence and lack of correlation are 

equivalent, which is why the assumption of non-Gaussianity becomes critical for this technique. 

However, in the case of UGW testing, this assumption is perfectly legitimate since the reflected waves are 

periodic signals with non-Gaussian distributions. 

The basic PCA approach linearly transforms a data matrix of n columns (sensors) and p rows 

(observations) to an orthogonal principal components space of equivalent dimensions [10]. The 

transformation occurs such that the direction of the first principal component is determined to capture the 

maximum variation of the original data set. The variance of subsequent principal components is the 

maximum available in an orthogonal direction to all previously determined principal components. The 

full set of principal components is an exact copy of the original data set, though the axes have been 

rotated. Selecting a reduced subset of components results in a reduced dimension structure with the 

majority of the information available, in which information is assumed to be equivalent to variance. 

Usually, small variance components that are not retained are assumed to contain unrelated information, 

such as process or measurement noise. While PCA looks to decorrelate a signal’s components, ICA aims 

to make them statistically independent. 

ICA was introduced in the early 1980s and attained wide attention and growing interest in the mid-

1990s. The technique attempts to identify original signals from a mixture of observed signals, which are a 

linear combination of sources, without knowing any information about the mixing matrix, or having any 

prior information about the sources except that they are assumed to be independent and have non-

Gaussian distributions. 

Since the sources are assumed to be independent, they are termed independent components (ICs). One 

requirement for IC isolation is that only one component can have a Gaussian distribution. A detailed 

survey of ICA can be found in [11,12,13]. ICA is rooted in the need to find a suitable linear representation 

of a random variable. The classic method to solve this problem is to use second order information in the 
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covariance matrix, such as PCA and factor analysis [10,14]. Rather than applying independence as a 

guiding principle, PCA attempts to linearly transform a data set resulting in uncorrelated variables with 

minimal loss of information [13]. For Gaussian-distributed variables, uncorrelatedness is identical to 

independence. For non-Gaussian-distributed variables, independence is a much stronger requirement than 

uncorrelatedness. 

For non-Gaussian data, higher-order statistics are needed to obtain a meaningful representation. 

Projection pursuit is a technique for finding interesting projections of data, such as clusters using higher-

order statistics [14]. Projection pursuit uses a cost function, such as differential entropy [14], rather than 

the mean-squared error used in the PCA transformation. Projection pursuit is effective for non-Gaussian 

data sets. There are similarities and connections between ICA and these techniques. In the noise-free case, 

ICA is a special case of projection pursuit. ICA can also be viewed as a non-Gaussian factor analysis. 

ICA must use higher-order statistics while PCA only uses second-order statistics. 

ICA is a statistical framework in which the observed data, X, are expressed as a linear transformation 

of latent variables (‘ICs’, S) that are non-Gaussian and mutually independent. We may express the IC 

model as: 

 (1) 

where X is an (n x p) data matrix of n sensors each containing p observations, S is an (n x p) matrix of p 

ICs, and A is an (n x n) matrix of unknown constants, called the mixing matrix. 

The problem is to determine a constant (weight) matrix, W (n x n), so that the linear transformation of 

the observed variables Y (n x p) 

 (2) 

has some suitable properties. In the ICA method, the basic goal in determining the transformation is to 

find a representation in which the transformed components, yi, are as statistically independent from each 

other as possible and hopefully represent S. 

When random variables with specific non-Gaussian distributions are combined, the central limit 

theorem states that the sum is more Gaussian than the original variables. Therefore, to separate the 

original variables (S) from a sum (X), we want to choose a transformation (W) that makes them as non-

Gaussian as possible. We then assume that the maximally non-Gaussian signals, Y, are estimates of the 

original ICs, one of which is the parameter value, and thus the parameter estimate. 

Hyvarinen [11] developed a particularly efficient ICA algorithm called FastICA, which is used in this 

report. It uses negentropy J(y) as the measurement of the non-Gaussianity of the components: 
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 (3) 

where H(y) is the differential entropy of a random vector y, which can be written as: 

 (4) 

where f(y) is the probability density function of random vector y. 

Based on the maximum entropy principle, negentropy J(y) can be estimated as [11]: 

 (5) 

where G is any nonquadratic function, c is a positive constant,  is a Gaussian variable of zero mean and 

unit variance, and E{} is the operator of mathematical expectation. ICA has two ambiguities. One is that 

the variances of the ICs cannot be determined. The other is that the order of the ICs cannot be determined 

[13]. In this report, the FastICA algorithm has been utilized to perform ICA on UGW data collected on a 

steam generator shell. 

2.2 Performance of ICA on Collected Guided Wave Signals 

Applying UGW technology, it is possible to inspect long stretches of straight pipelines from a single 

location; a single collar of sensors can routinely inspect up to 100 m of pipe [15] under ideal conditions. 

However, such long coverage is a compromise between length of inspection and sensitivity to changes in 

cross-section with most UGW systems capable of resolving up to 5% of wall thickness change [16]. This 

is the reason for combining UGW with gridded ultrasonic inspections in NPPs [9]. The GW has full 

volumetric coverage and propagates well in steel, making it especially suited for long-range screening 

applications without many bent pipes. 

When applying ICA to UGW data, it is postulated that the matrix X contains reflections from n 

sensors each having p samples as a function of time or distance. The matrix S is the sought-after 

representation of n ICs each having p time samples. Columns of matrix A are weighting functions and 

indicate how much each source signal contributes to each observed signal. Since there are two sets of 

sensors installed on the heat exchanger shell—circumferential and axial—these two sets need to be 

analyzed separately as two groups. Also, for ICA to be applicable, the sensor beams need to 

volumetrically overlap as shown in Figure 7. For this reason, the group of sensors that were analyzed in 

this report using ICA were four circumferential sensors: S4, S5, S6, and S7. Since the GW propagates 

around the shell multiple times, the same features are detected repeatedly after each circle. Figure 8 shows 

reflection signals from the four circumferential sensors, along with major identified features. Four round 

trips around the shell are shown since some features are only detectable after the second- or third-round 

trip, after the beam has spread [8,9]. The position of each feature is plotted against the metal path distance 
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from the sensor. The location of structural, engineering, and geometric features is known from the shell’s 

layout plan provided by the plant. 

 

Figure 8. Reflection signals from circumferential sensors S4, S5, S6, and S7. A–sensor-transmitted signal; 
B–axial weld located on the south side of the shell; C–axial weld located on the north side of the shell; 
D–unknown source; E–unknown feature, only seen after the second-round trip due to the beam spread; 
F–reflection from the south side of the inlet nozzle; G–reflection from the south side of the small pipe at 
the top of the shell; H–reflection from north side of small pipe at the top of the shell; I–unknown source; 
and J–unknown source. 

Since each reflected signal is a mixture of different sources, the goal of ICA is to separate the sources 

into different components, thus extracting defect or structural reflections into one set of components and 

relegating noise to other components. Due to multiple round trips around the heat exchanger shell, the 

reflected signal from one sensor is almost a complete replica repeated four times. The first segment runs 

from 0 to 167.8 in., the second from 167.8 to 335.6 in., the third from 335.6 to 503.4 in., and the fourth 

from 503.4 to 672 in. Analyzing all four replicas or segments does not add any new information; as such, 

the ICA was focused on smaller segments of the reflected signals. Notice, not all features were detected 

by all sensors. This is because not all structural and geometrical features were in the signal’s path from a 

particular sensor and because reflections from some features detected by a specific sensor were too weak 

to be visible on the graph. 

The first analysis was performed on segment one to see if ICA can separate the pulse signal A into a 

separate component. The pulse signal A after a round trip is registered by all four sensors and is located at 

a distance of 167.8 in., which is the circumference of the shell. It is replicated at 335.6 and 503.4 in., as 

shown in Figure 6. The feature A is essentially the sensor registering its own pulse after the pulse made a 

round trip around the shell. 
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Figure 9 shows ICA applied to the first echo signal A as shown in Figure 8. The right-hand panel in 

Figure 9 shows the raw echo signals registered by four circumferential sensors. As we can see, all four 

sensors pick up the pulse signal after its first round trip around the shell. The left-hand column in Figure 7 

shows the ICs extracted from four raw signals. As we can see, IC 2 contains the echo signal, while the 

other three components contain noise. While the separation is not perfect, this result demonstrates that 

ICA is capable of separating the echo component from the noise. While IC 2 has some distortions in 

comparison to the raw signal, it does contain all elements of the echo signal. On the other hand, the other 

three ICs represent noise, which has been extracted from the raw signals. This example has one clearly 

defined source and four sensors registering it. The next example is more challenging as we process the 

data containing reflections from multiple segment three sources in Figure 8. This segment contains 

reflection B from the weld, the unknown source reflection E, and some noise. The signals for this analysis 

were taken from the third-round trip segment, since feature E seemed to have a better reflection after the 

third-round trip due to beam divergence. The results are shown in Figure 10. As we can see, the weld 

reflection component and the unknown source reflection are separated into ICs 1 and 3, while the noise 

components are relegated to ICs 2 and 4. IC 2 contains broad-band noise, while IC 4 contains narrow- and 

broad-band noise. Notice, that after ICA, IC 3, which mostly contains feature E, has an amplitude 

comparable with IC 1, which is the weld reflection. In the raw data, the weld reflection B has an 

amplitude that is four times larger than feature E. In this case, ICA is helpful in improving the detection 

of weak features. 

 

Figure 9. Results of applying ICA to sensor-transmitted signal A. 
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Figure 10. Results of applying ICA to the weld reflection C. 

Finally, ICA is applied again to the first segment in Figure 8 that contains multiple reflections, such 

as the C-axial weld located on the north side of the shell, reflection D from an unknown source, 

reflection G from the south side of the small pipe at the top of the shell, reflection H from the north side 

of the small pipe at the top of the shell, and reflection I from an unknown source. The results of this 

analysis is shown in Figure 11. In this case, ICA is challenged to work with a situation when the potential 

number of sources—five—is larger than the number of sensors—four. In industrial applications, such a 

situation may arise when trying to detect pitting corrosion that will have numerous reflections from small 

defects and the number of defects may well exceed the number of sensors. Figure 11 shows that in this 

case, the ICA does not perform well as it is unable to extract specific features into different components. 

Although this result is expected due to limitations of the currently used algorithms, it points to the need to 

develop ICA algorithms that can tackle situations with a large number of sources, potentially exceeding 

the number of sensors. These new approaches need to focus on providing additional information about 

fixed and unchanging reflection sources, such as welds and nozzles. Supplying such information to 

algorithms will allow analysis of new and unknown sources that may be due to the corrosion process. 

 

Figure 11. Results of applying ICA to the first segment of the data with multiple reflections in Figure 6. 
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3. ADVANCED ML PATTERN RECOGNITION TECHNIQUES TO 
PROCESS DATA FROM UGWS AND FIBER OPTIC TRANSDUCERS 

3.1 Shallow BackPropagation Neural Networks and Regularization 

The ICA is a feature extraction algorithm producing relevant features that can be further utilized for 

pattern recognition using advanced ML algorithms, such as neural networks (NNs) or support vector 

machines (SVMs). Both techniques are widely used for regression estimation and pattern recognition. 

Since they are nonlinear and nonparametric, they offer unique capabilities for both regression and pattern 

recognition; however, due to their nonlinear and nonparametric nature, they can also cause problems with 

the development of N models. 

One of the most challenging problems with NNs is their regularization, which is the ability to obtain 

repeatable and consistent results regardless of small variations in training data or the network’s 

architecture. NNs require nonlinear regularization, which is a much more difficult problem than its linear 

counterpart, and has no general solution due to nonlinear error propagation and existence of multiple local 

minima (multiple solutions) on the error surface. Once the NN training is complete, the problem then 

becomes the estimation of its generalization capabilities or, in other words, has the gradient decent 

converged to a correct solution or is it necessary to change the NN architecture or initialization to look for 

a better solution. The solutions provided by the NNs depend on several factors, namely, weight 

initialization, number of neurons, stopping criteria, and the training algorithm. To make pattern 

recognition performed by NN consistent, it is necessary to make the NN’s solution invariant under all of 

these different conditions. If we are not able to get consistency under these different conditions, it will 

become necessary to at least estimate the reliability of our inference. 

Several methods have been proposed to assure the stability and consistency of the NN’s solutions. In 

this report, we tested the most popular NN’s regularization techniques (i.e., the Levenberg-Marquardt 

[LM] algorithm, weight decay, cross-validation, weight initialization, and Bayesian regularization). The 

NN under investigation here involved multilayer perceptron (MLP) with nonlinear hidden layer and step 

output function. There were 513 input neurons, 10 hidden neurons, and 2 output neurons. This network’s 

architecture is shown in Figure 12. The input patterns have been obtained by applying Fourier transform 

to the UGW signals, and then converting Fourier transform into power spectral density (PSD). The UGW 

signals and their power spectral densities are shown in Figure 13. 
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Figure 12. NN architecture used for the pattern recognition of UGW signals. 

 

Figure 13. UGW signals from sensor 4 used to train, validate, and test the NN. The left-hand column 
shows the time-domain signals for the two classes, while the right-hand side column provide the PSDs for 
the two classes. 

The UGW signals used for MLP training were selected from circumferential sensor #4. Class 1 

signals were recorded between January 27 and March 16, 2011, while Class 2 signals were recorded 

between December 26, 2012, and February 12, 2013. For each class, 49 patterns have been created, each 

pattern representing the PSD of a signal recorded on one day. The last pattern for Class 1 recorded on 

March 16, 2011, and the first pattern of Class 2, recorded on December 26, 2012, are separated by nearly 

19 months, which is sufficient time for the development of a noticeable degradation in the heat exchanger 

shell. To have a reference for NN consistency, the MLP was first trained without any regularization down 

to mean square error 10-3 using ordinary gradient decent. Cross-validation was used to prevent overfitting. 
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There were 10 hidden neurons and their activation function was via hyperbolic tangent. The training was 

performed one hundred times starting from different initial weights with a limiting number of epochs 

equal to 1000. The classification accuracy had been estimated using a test data set. For training, the 

available 98 patterns for two classes were randomly divided into a training set, a validation set, and a test 

set. The classification accuracy was calculated for the whole data set representing all 98 patterns. 

The LM algorithm has inherent regularization properties, as discussed in [17]. To study the 

regularization properties of the LM algorithm, an NN was trained one hundred times starting from 

different initial conditions and for a different number of training patterns. The results of this exercise are 

shown in Table 1. 

Table 1. Average classification accuracy and its standard deviation for different methods of NN 
regularization. The NN had 513 input neurons, 10 hidden neurons, and 2 output neurons. 

Training Method Average 
classification accuracy, % 

Standard Deviation of 
classification accuracy, % 

Gradient descent 74.4 23.5 

Levenberg-Marquardt 99.9 0.8 

Weight decay regularization 85.1 20.5 

Bayesian regularization 96.7 10.3 

Cross-validation regularization 98.5 8.5 

Regularization through weight initialization 87.3 19.2 

 

In Table 1, “average classification accuracy” denotes the mean value of classification accuracy 

calculated for 100 runs with different initial weights and randomly selected training patterns. The 

standard deviation reflects the variability in classification accuracy from run to run. As can be seen from 

Table 1, the average value of classification accuracy for gradient descent depends significantly on weight 

initialization and training patterns with a mean value of 74.7% and a standard deviation over 23%. The 

standard deviation shows that NN inference is unstable under different random starts when other 

parameters, such as the number of hidden neurons and the training method are fixed. However, it should 

be noted that for the LM method of regularization, the variance of classification accuracy was 

substantially reduced when compared to ordinary unregularized gradient decent. Using the LM algorithm 

improved the classification accuracy to over 99%, which is a significant improvement over ordinary 

gradient decent. In addition, the standard deviation of classification for the LM method is dramatically 

reduced, as is evident in Table 1. 

The instability of inference for gradient descent can be attributed to redundant flexibility of NN as a 

function approximator and to collinearity of the training data set. It has been known for a long time in the 

NN community [18,23,24] that to get a network with good generalization capabilities, some kind of 

capacity control should be imposed on the family of functions that can be implemented by a neural net. 

For example, this type of control can be implemented by controlling the magnitude of weights and biases 
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in the neural net. As shown in [19,20], the complexity of the function that can be implemented by the NN 

depends on the magnitude of the weights (i.e., the bigger the weight, the more complex function the NN 

can approximate). Obviously, a sufficiently large NN with a large number of hidden neurons can 

approximate the arbitrary complex function up to any degree of accuracy. The problem is that letting the 

NN do this also allows it to approximate noise or artifacts in the data, thus “discovering” “structures” that 

do not actually exist in the data; hence, providing a predictive model with poor generalization 

performance on new unseen data. 

By constraining the NN complexity, it is hoped that a subtle compromise between fitting the data and 

keeping our model as simple as possible can be resolved. This is a version of Occam’s razor, which states 

that a simple model should be preferred to a complex one provided both are consistent with the data. The 

easiest way to restrict the complexity of an NN is to add a penalty term to its least square error function. 

This penalty term is usually the sum of all the squares of the NN’s weights and biases and is analogous to 

ridge regression in statistics. The penalized functional to minimize in this case looks like: 

λ λ (6)

where E is the usual mean squares error term, S is the penalty term, which is the squared norm of all 

weights and biases in the network, and  is the regularization parameter that controls the trade-off 

between E and S. The rationale behind this type of regularization is that we anticipate that mapping, 

implemented by NN, should be smooth or non-oscillating, and that the second term in formula (6) 

penalizes such non-smoothness. The parameter  should be chosen prior to the application of this method 

of regularization. The selection of regularization parameter is a difficult problem even for linear 

techniques and will be addressed later in this report. Parameter  is defined by the amount of noise in the 

data, which is usually not known a priori. Some initial ideas about the value of this parameter can be 

delivered by analysis of the eigenvalues of the Hessian matrix for the NN, as is shown in [21]. 

The results of NN training with weight decay regularization is shown in Table 1 for  =0.9, which is 

selected by cross-validation. The network was reinitialized 100 times, every time with the same  to 

check the dependence on the random start. This dependence is summarized by standard deviation of the 

classification accuracy in Table 1. As can be seen, weight-decay regularization improved NN’s stability, 

while at the same time significantly improved its classification accuracy. However, it has not been able to 

match consistency or accuracy of the LM method. Under certain assumptions, the weight decay 

regularization has a probabilistic Bayesian interpretation. Consider this learning problem from a general 

point of view as an estimation of an unknown function from the available finite amount of data [23]: 

ε  (7) 
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where y is response variable, x is the vector of independent variables, w is vector of model parameters 

that have to be estimated during the training process,  is the noise term that is assumed to have normal 

distribution with zero mean and some variance 2 , and N is the number of available data samples. 

According to Bayes theorem, a posteriori probability of the model having the data P(w/[y, x]) is 

proportional to the likelihood of data assuming that the model is true multiplied by prior probability P(w) 

of the model, or: 

∝  (8) 

where P ([y, x]/w) is the likelihood of observing the data given a particular set of weights in the model. 

This likelihood is just a joint probability density function for observed data that has the set of weights w 

as a parameter. Assuming independence of different training points and taking into account the normality 

assumption, we get: 

∏
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Making additional assumption that prior distribution of weights is Gaussian with zero mean and some 

variance and taking logarithm of both parts in (9), we get a familiar penalized functional: 
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This is a maximum a posteriori estimate or penalized maximum likelihood estimation with explicit 

form of regularization parameter, which is obviously a function of unknown noise variance 2. This 

analysis demonstrates that simple weight decay under the assumption of normality of the error term is 

equivalent to one of the forms of Bayesian inference with Gaussian prior on weight distribution. 

The second very popular type of regularization for NNs is early stopping or cross-validation. This 

kind of regularization is largely ad hoc and is based on dividing the training data into two parts: the 

training set and the validation set. The idea is to stop ML before the NN begins to learn noise and 

spurious structures in the data. During the training, while minimizing mean squared error, the NN learns 

more and more structure from the data; however, at some point the NN begins to learn a pseudo-structure 

or noise, thus providing more “rough” mapping. The goal of the validation set is to provide an 

independent test set for verification of how well the trained network is going to generalize on previously 

unseen data. The results for this kind of regularization are shown in Table 1. For this test, 30 training 

patterns were run with 10 validation patterns. It can be seen from Table 1 that the classification accuracy 

again depends on the number of on-random initialization, as indicated by the standard deviation of 8.5%. 
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The standard deviation is relatively small in comparison to the gradient descent and weight decay 

regularization, but significantly larger than LM’s standard deviation. It should also be noted that the 

average classification accuracy of 98.5% is high and second only to the LM method. An obvious 

limitation of this type of regularization is that the final solution depends on the initial start, as well as the 

path by which the system evolved to its final state. In addition, it requires splitting training data into at 

least two sets, thus decreasing the amount of data available for training, which in case of scarce data can 

be a serious limitation. An obvious advantage of this kind of complexity control is its simplicity. 

A less-known type of regularization for NNs is regularization by initialization, when initial weights of 

the NN are set to small values, thus forcing the NN to converge to the same local minima and minimizing 

the dependence on the random start. This kind of regularization is also ad hoc because by setting the 

initial weights to small values, the solution can, in fact, be specified. The application results of this kind 

of regularization is shown in Table 1. It can be seen that regularization by initialization reduced the 

standard deviation in comparison to gradient descent, meanwhile increasing classification accuracy. 

However, this type of regularization cannot match the accuracy or consistency of the LM method or 

regularization by cross-validation. 

The most advanced method of NN regularization is via Bayesian regularization [19,20,22]. The 

Bayesian point of view on NN training is rather different from traditional. The traditional methods are 

variations on the maximum likelihood principle, which states that from a variety of possible models the 

one that should be picked up is the one most probable to the observed data. The maximum likelihood 

principle considers model parameters as unknown but fixed values, and tries to estimate these parameters 

from the available data, providing the only set of parameters most likely generated by the observed data. 

In conventional NN training, a single set of weights are available, which are used for future inference. In 

contrast to the maximum likelihood principle, the Bayesian approach considers the model parameters to 

be random variables having a priori distribution. Having obtained this prior distribution, the Bayesian 

inference proceeds with an application of the Bayes theorem to modify this prior distribution and produce 

a posteriori distribution that now depends on prior information and the data. As such, the Bayes theorem 

for statistical learning can be written like this: 
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 (11) 

where the P(Model/Data) describes the conditional probability that a Model is true given Data. 

P(Data/Model) describes conditional probability to observe Data given a Model, or in other words, the 

likelihood of observing the data if the Model is true. P(Model) describe our prior beliefs, in the form of 
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probability, how an actual model is expected to look. P(Data) is the total probability to observe the Data 

under all thinkable models described by P(Model). The denominator P(Data) does not depend on the 

model and is sometimes omitted from the formula. The Bayesian approach also allows the comparison of 

several potential models based on their “evidence,” as derived from the data [19]. Bayesian learning for 

NNs consist of several inference levels [20]. First, we specify the performance function to be optimized in 

the form: 

β α  (12) 

where ED is the data dependent term, EW is stabilizing term, and ,  are regularization parameters to be 

defined from the data. At the first level of inference, Bayesian training infers weight values for given 

regularization parameters  and , using the Bayes theorem as follows: 
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where P(w/D, , , H) is posterior weights distribution, P(D/w, , ,H) is the data likelihood given weights 

w, the regularization parameters  and , and model H, P(w/ , ,H) is the prior weights distribution and 

P(D/ ,  ,H) is the total data probability. Parameters  and  are called hyperparameters to distinguish 

them from the true parameters—weights. The second level of inference is to infer these hyperparameters, 

again using the Bayesian approach: 
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where all of the probabilities in the formula have the usual Bayesian interpretation. The final step in the 

Bayesian inference is model inference or model selection, when different models are compared based on 

their “evidence” P(D/H), which is the likelihood for the model multiplied by the model’s Occam factor 

[24], which is the term used to penalize the model for having an excessive number of parameters. 

The key to successfully using Bayesian training is the right choice of prior distribution and is 

sometimes considered to be a shortcoming of Bayesian inference, due to its “subjective” nature. However, 

facing ill-posed problems, there is no other way to do so but by using prior information, because the data 

underdetermines the solution. Having chosen prior distribution of the weights, Bayesian training gives 

rise to posterior weights distribution, which in its turn gives rise to the distribution of the output values 

during the inference on the new data. The mean of this output distribution is the inferred value. 

The application results of using Bayesian regularization to UGW signals classification are shown in 

Table 1. The number of training patterns used in this experiment was 30. As can be seen from the table, 
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Bayesian regularization produced a high classification accuracy of 96.7% while significantly reducing the 

standard deviation in comparison with the gradient descent method. However, it was unable to match the 

classification accuracy or consistency of LM or cross-validation. Also, this kind of inference drastically 

depends on the initial number of hidden neurons. 

In conclusion, we can say that NNs being a powerful and flexible tool for non-parametric modelling 

and inference are a tough challenge from the point of view of their regularization and consistency due to 

inherent nonlinearity. Being unregularized, NNs can provide inconsistent results, which are non-

interpretable and non-repeatable. 

Our results show that the ML method provides the best solution in terms of classification accuracy 

and stability. Bayesian training provided a good classification rate and stability in comparison with 

gradient descent training. However, a very serious limitation of using the Bayesian approach to NN 

training is its computational burden, which in fact limits its application to a small amount of data and 

small networks. The use of this approach in online systems is out of the question due to the same reason. 

For a quick analysis of classification system stability based on NN, cross-validation, and weight decay 

methods can be recommended, which provide a reasonable trade-off between stability and computational 

time. The LM algorithm proved to be the most stable technique. The stability of this algorithm can be 

explained by its built-in regularization properties, which helps it to damp high-frequency noise in weights 

in the vicinity of the solution. Regularization by initialization is a rather new technique and its validity has 

to be evaluated more rigorously in theoretical and practical aspects, but our results show that it can reduce 

its dependence on initial conditions, which is natural to expect, and this method can be effective from a 

computational point of view because it does not require any additional computational efforts. To obtain 

results reported in this section, the NN architecture, such as the number of layers and neurons in each 

layer were kept fixed. If these parameters were varied, then even for most stable methods such as ML, it 

is expected to have more variability in the classification rate. 

3.2 Support Vector Machines 

An SVM is an advanced pattern recognition and regression technique that attempts to address existing 

problems with the ill-posed nature of NN training. Results presented in the previous section demonstrated 

that NNs are poorly controlled learning machines, which performance depends on initial conditions and 

training patterns. 

The goal of SVM training is to minimize the expected prediction risk on future data. In its most 

general setting, the problem of learning from the data can be formulated as follows: given a data 

generating mechanism, which is represented by a joint distribution P(x, y) = P(x)P(y/x), where x ∈∈ RN 
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and y ∈ R or {-1,1} depending on what problem we consider—regression or pattern recognition. P(x) is a 

probability density function of input patterns and P(y/x) is the probability of output conditioned on the 

input. In practice, instead of having probability distribution P(x, y), we always have samples from this 

distribution Dn=(x1,y1),…(xn,yn). Given a set of parameterized functions fw(x), the goal is to find 

parameters w that minimize the discrepancy between y and fw(x). This discrepancy is called a loss 

function and can be written as L (y, fw(x)). A typical example of a loss function is L2 loss function, which 

is L2 = (y-fw(x))2 or the squared distance between target y and predicted value fw(x). The expected or true 

prediction risk is defined as a mathematical expectation of L (y, fw(x)) as: 

=
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Obviously, the true risk cannot be found in practice because P(x, y) or data-generating distribution is 

generally unknown, and what is available is only a sample of it—Dn. As a result, the minimization of true 

risk (1) in practice is replaced by the minimization of empirical risk, which is defined as: 
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Equations (15) and (16) are also often called risk functionals. The goal of a learning algorithm or 

learning machine is to find a function fw(x), which delivers the minimum to risk functionals (15) and (16). 

The major question that statistical leaning theory answers is if a function fw(x) delivers a minimum to the 

empirical risk (16), does it deliver the minimum to the true risk (15)? If it does, under what conditions? 

The law of large numbers states that if the size of training sample Dn is made infinitely large, then Remp 

would converge to R; however, for a finite amount of training data, Remp can always be made zero by 

choosing a model from a class of sufficiently complex models. It means that Remp in practice is overly 

optimistic in providing a biased estimation of the true risk, R. To overcome this difficulty, statistical 

learning theory [25,26] considers the worst-case scenario or: 

)()(sup wRwR empw −
 (17) 

which is, it analysis the maximum discrepancy that can occur between true and empirical risk. Under the 

probably approximately correct (PAC) model, Vapnik [25,26] showed that the bound for the true risk (for 

the classification problem) holds with the probability 1-η (0≤η≤1) is: 

≤
n
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It can be seen that the expected risk is bounded from above by the sum of two terms—empirical risk 

and VC confidence. VC confidence represents a complexity penalizing term and depends on the number 

of training samples n and VC-dimension h. The VC-dimension is the measure of potential flexibility or 

capacity of the learning machine. For linear systems, the VC-dimension is equal to the number of 

parameters used in the learning machine. The problem with the VC-dimension is that theoretical estimates 

of it are available only for simple learning machines. VC-dimension is a purely combinatorial concept 

that has no connection with topology. Loosely speaking, the VC-dimension of a learning machine 

measures how many training examples the machine can learn or memorize with zero empirical risk. 

Obviously, for a machine to be useful and able to generalize, the VC-dimension should be significantly 

smaller than the number of training samples to avoid memorization. Thus, the VC-dimension provides an 

estimation of the minimum number of training samples that are necessary to build a model with valid 

generalization properties. If we are able to estimate VC-dimension of a learning machine, then we can use 

this estimation in (18) to obtain the upper bounds on the prediction risk. Unfortunately, the estimation of 

the VC-dimension for non-linear predictive models like NNs is very difficult and only rather loose 

bounds are available [25,26]. 

To overcome the problem with the estimation of VC-dimension, Vapnik [25] proposed a new learning 

paradigm that is able to control the VC-dimension, and hence, the generalization capabilities of a learning 

machine. We start consideration of SVM with the simplest linear case and then move towards nonlinear 

cases. Let us have a set of data, which is linear separable as illustrated by Figure 14. 

 

Figure 14. Linear separable classes. 
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The data are clearly separable, and the optimum separation would be provided by the Bayesian 

optimal classifier, which however again requires the knowledge of underlying densities. In the absence of 

information about data distribution, several ways exist to build a separating hyperplane, as is shown in 

Figure 15. 

 

Figure 15. Separating hyperplanes. 

Obviously, not all of them would have equal generalization capabilities. Intuitively, the bold line will 

probably provide the smallest number of errors on future unseen data, but the question remains of how to 

build it. Vapnik’s idea of an optimal separating hyperplane is that the one with the smallest number of 

future errors should be equally distant from the closest data points. This distance is referred to as the 

margin and the separating hyperplane is called optimal, if the margin is the maximum size. This idea is 

illustrated in Figure 16. 
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Figure 16. Optimal separating hyperplane. 

In our linear separable case, a pair (w,b) can be found such that [25]: 

≥ ∀ ∈

≤ ∀ ∈  (19) 

and the parameterized hypotheses space in this case would be: 

 (20) 

Without the loss of generality, we can scale w and b in such a way to get: 

⏐ ⏐  (21) 

This normalized hyperplane is called a canonical hyperplane and as shown in [26], the VC-dimension 

of the canonical hyperplane is N+1 where N is the dimensionality of the input vector x. Now we can 

constrain the set of hyperplanes even more considering only those for which Aw ≤ . As shown in [26], 

the VC-dimension of the set of canonical hyperplanes constrained in this way is: 

 (22) 

where S is the radius of the smallest sphere that contains the training input vectors (x1,xn). Hence, 

controlling the norm of the weights of the separating hyperplane we can, in fact, control the VC-

dimension and its capabilities. On the other hand, the distance between a training vector x and canonical 

separating hyperplane is: 
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w

bxw +*
 (23) 

According to the normalization condition (21), the distance between the closest data points and the 

separating hyperplane is simply
w

1
, and hence, minimization of the norm of w would lead to the 

maximization of the distance between the canonical separating hyperplane and its closest data points. 

Putting all of these together, we need to minimize 
2

2

1
w  subject to the constraints of (19) that can be 

written in compact form as: yI(w*xi +b) ≥ 1 , i=1,…,n. We use the technique of Lagrange multipliers to 

construct the Lagrangian: 
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where λ is the vector of non-negative Lagrange multipliers. The solution to this optimization problem is 

determined by the saddle point of this Lagrangian, which has to be minimized with respect to w and b and 

maximized with respect to λ [25]. Differentiating (24) and setting the results to zero gives: 
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From (25), the optimal weights can be written as: 

=
=

n

i
iii xyw

1

** λ  (26) 

The vectors for which λi ≥ 0 are called Support Vectors, and only these Support Vectors contribute to the 

construction of the optimal solution. 

The bias term can be calculated as: 

 (27) 

for any support vector xi. From (20), (25), and (26), the optimal decision surface can then be written as: 

=
+

n

i
iii bxxy

1

** )*(λ  (28) 

Notice that data x and xi appears in the solution only in the form of a dot product. This plays a vital 

role in the generalization of SVM for a nonlinear case. 
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3.3 Nonlinear Support Vector Machines 

Linear problems, while helpful in the clarification of ideas, are of little practical use. To generalize 

SVM to a nonlinear case, Vapnik [25,26] considered the mapping of the input vector x into a high-

dimensional feature space ϕ (x) with the dimensionality of M>N. Then, the optimal hyperplane in feature 

space would be: 

=
+

n

i
iii bxxy

1

** )(*)( ϕϕλ  (29) 

which is again a hyperplane, but in feature space. The transformation operator ϕ might be 

computationally expensive and very difficult to find. However, if there were a “kernel function” K(x,xi) = 

ϕ(x)*ϕ(xi), we would not need the explicit form of the transformation, just this kernel function. All of the 

previous derivations hold since we are still doing linear separation, but now doing so in the feature space. 

By using the “kernel function,” we can write the separating hyperplane in feature space as: 

=
+

n

i
iii bxxKy

1

** ),(λ  (30) 

These “kernel functions” can be constructed considering general forms of the dot product in a Hilbert 

space [26]. Examples of such functions are: 

< >

e ixx 22
2/ σ−−

δ  (31) 

Each function implements different types of learning machines – linear, polynomial, radial basis 

function NN, or perception with one hidden layer. Hence, SVM accommodates different learning 

machines under one theoretical and implementation roof. The ability of SVM to find the most important 

patterns in multidimentional space can be used to discover important features otherwise not accessible by 

other techniques. For this report, we used an SVM with a radial basis function (RBF) kernel. The SVM 

has been trained and tested on the same 98 patterns used to test NNs in the previous section. The results 

of SVM performance are summarized in Table 2. For comparison purposes, this table also contains the 

classification results obtained with the NNs. 
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Table 2. Performance of SVM classifier in comparison with NN classifiers. 

Classification Method 
Average 

classification accuracy, % 
Standard Deviation of 

classification accuracy, % 
SVM, RBF kernel 100 0 

NN with LM training 99.9 0.8 

NN with Bayesian regularization 96.7 10.3 

 

The analysis of Table 2 reveals that SVM demonstrates superior performance in terms of 

classification accuracy and stability. While the SVM performance is impressive, it may be affected by the 

set of features that are presented to the leaning algorithm. 

3.4 Feature Selection 

Prior to utilizing ML pattern classification, different feature-selection methods should be applied to 

the existing sets of data in order to represent data in compact and most separable format. Feature-selection 

methods are dimensionality reduction techniques that aim to extract the most relevant information from 

raw data. Transformation of raw data into a set of features is called feature extraction. Feature extraction 

is necessary because raw data are often noisy and contain information that may be irrelevant to the 

problem at hand. In pattern classification, a choice of the “best” feature subset is known as the feature 

selection problem. In general, the problem of feature selection asks two questions: (1) which feature 

should be included in the classification model, and (2) in what form should they be included? The answer 

to these questions depends on a specific application of the classification system. For the defect detection 

problem, it is necessary to choose a subset of feature variables that have the best predictive power (i.e., 

minimum prediction error on future data). Unfortunately, it is not straightforward to choose such a subset 

simply because of the lack of a validation data set that could be used to evaluate the prediction quality. 

Refer to a linear model that represents a response variable Y  in terms of all available predictor 

variables qXXX ,,, 21  ( 24=q ) as a full model: 

i

q

j
ijji xy εββ ++=

=1
0  (32) 

and to a linear model that represents Y  in terms of a subset of p  variables ( qp < ) as to a subset model. 

By fitting the full model (32) to a set of data by using least squares, we obtain the best solution in the 

sense of minimum Mean Squared Error (MSE) on this set of data. This solution does not guarantee good 

prediction on future observations. Experience shows that in most applications, prediction accuracy is not 

improved by simply using all of the available predictors, more often the opposite effect is achieved [27]. 

In other words, the prediction accuracy of the full model is worse (or at least not better) than those of the 
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subset models because the variance of the predicted values for linear models with parameters fitted by 

least squares increases monotonically with the number of variables used in the prediction [28] 

⋅≥⋅
××

ββ
pnqn

XX varvar  (33) 

If a variable has no predictive value, then deleting that variable may increase the precision of the 

estimates. 

However, the price for deleting variables is the introduction of bias to the estimate unless the deleted 

variables have zero coefficients, or the set of retained variables are orthogonal to the set of deleted 

variables. Bias means that the value predicted by a subset model is different from that predicted by the 

full model, assuming that the full model gives an unbiased prediction. However, the solution of the full 

model is unbiased if the full model is correct and if the noise model is correct as well. In real world 

problems, neither of these can be claimed to be true. This implies that the solution of the full model may 

also be biased. 

On average, the effect of reduced variance is the deviation of the solution with lower variance Lŷ  

from the true value Ty  (i.e., unknown for any real-world problem) is less than that of the solution with 

greater variance Hŷ : 

( ) ( )THTL yyEyyE −≤− ˆˆ  (34) 

even though the latter has a smaller bias. This means better predictive power. However, when the bias is 

too large, the prediction is no longer better than that with greater variance. In other words, by dropping 

off more variables, a reduced variance is being traded for increased bias. Deletion of a variable makes 

sense only if a gain of prediction precision (e.g., lower variance) is greater than a loss due to the 

introduced bias. Since the “true” value is unknown, it is hard to estimate the bias of the solution in order 

to determine when further reducing of the variance no longer gives prediction improvement. Notice that 

feature subset selection is the most common regularization technique in pattern recognition and statistics. 

Hence, if we include unessential variables in the set of predictors, it will degrade the accuracy of the 

classification on future data. The use of all features does not guarantee good classification. This implies 

that proper predictor subset selection is of great importance in the fouling problem and the only 

reasonable choice must be made based on the best predictive power which, in turn, must be somehow 

evaluated without having a validation data set (or a correct answer). One method to do that selection, 

known as complexity penalization of models, is discussed below. 
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Due to the independent works of Kolmogorov, Solomonoff, and Chaitin [29] on the theory of 

algorithmic complexity, it is now possible to associate the complexity of objects with the length of their 

description. The algorithmic complexity of an object represented as a binary string is the length of the 

shortest computer program (i.e., description) that can print that string and halt. The main drawback of this 

definition is that the so-defined algorithmic complexity is not computable and needs to be approximated 

to be used for practical applications. This fact does not limit the power of the approach. Note that the 

number π = 3.14159265… is not computable, but its approximations are successfully used everywhere. 

The only difference is that we can determine the accuracy of our approximation to the number π, but we 

cannot quantify this about approximations to the algorithmic complexity. One of the possible 

approximations to the algorithmic complexity of an object is the description length measured as the length 

of the codeword corresponding to that object. It is well known due to the McMillan-Kraft theorem [30] 

that if there is a probability distribution defined over a number of objects (or binary strings, x ), then there 

exists a uniquely decodable code with codeword lengths: 

( ) ( )xPxL log−=  (35) 

We can refer to ( )xL  as the description length of the object x  (or as the approximate value of its 

complexity). In other words, we can evaluate the complexity of objects (data or models) by calculating 

( )xL , assuming we know the probability distribution defined over the objects. Another result of using 

Algorithmic Complexity theory with great importance in regards to the feature selection problem is the 

definition of universal distribution [29], which puts our intention for preferring simpler models into a 

rigorous form. It is expressed mathematically by: 

( ) )(2 xLxP −∝  (36) 

It reflects the fact that if a string has appeared due to cause (i.e., a computer program has printed it), 

the probability that this string is simple (i.e., it has a short description length) is much higher than the 

probability that it is complex. Therefore, when building a model from this data, one must prefer simpler 

models because the probability that our data were generated by simpler models (or that our data have 

shorter descriptions) is much higher. Occam’s razor principle states that it is vain to do with more what 

can be done with less. 

The problem of feature selection can be reformulated in terms of probabilistic model classes kM , 

each corresponding to the subset models with k  predictors: 

( ) ( ) ( )( ){ }kk XXXYPM ,,,| 21= , (37) 
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and denote by kM  the model in model class kM  that is optimal in some sense. For many practical 

applications, we only need to consider the probabilistic model classes. The reason is that deterministic 

models, given in the form of a functional mapping YXf →:  with an error function that measures the 

goodness of fit, are defined as: 

( ) ( ) ( )
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n
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tt yyyyyy

1

2

1

ˆˆ,ˆ, δδ  (38) 

and can be easily transformed into probabilistic models by using probability distributions induced by the 

error function [31]. It is easy to show that a maximum likelihood estimate of the parameter for the 

induced probability distribution minimizes the error function ( )yy ˆ,δ . This means that finding the 

maximum likelihood estimate is equivalent to finding the solution of the original deterministic problem. 

Perhaps the simplest way to show how complexity-penalized model selection arises is to use the 

Bayesian rule where we choose the model that has a maximal posterior probability: 

( ) ( ) )(|| kkk MPMDPDMP ∝ . (39) 

For many years, the Bayesian inference has been criticized for its using subjective prior probabilities. 

Now we can use the power of Bayesian inference for selecting a model class among alternative ones 

using the universal prior distribution on the model classes. This can no longer be claimed to be subjective. 

Using the universal distribution (5) over the model classes (6) and taking negative logarithms of both 

sides of (8) we arrive at a so-called penalized log-likelihood criterion: 

( ) ( ) ( )

( ) ( )kk
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kk

MLMDP

MDPDMP k

+−=
−−∝− −

|log

2log|log|log
 (40) 

The minimum of expression (9) over the model’s parameters represents the description length of the 

data and the model class. According to this criterion, we must choose the model class that results in the 

shortest description (or has maximum posterior probability). Looking at expression (9), we see that the 

desired solution represents a tradeoff between the shortest description of the data represented by a model 

class and the lowest complexity of the model class. In general, any complexity-penalized criterion selects 

the model to maximize the fit to the data while minimizing the model complexity. The model chosen by 

using criterion (9) will provide better prediction on future data than those corresponding to longer 

descriptions. The way of exploiting description lengths for complexity-penalized model selection is 

simplified for the clarity of explanation. If we follow the reasoning presented in the minimum description 
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length (MDL) literature [31], minimizing the total length of the code achieved for the data with the help 

of a proposed model class by using a particular coding scheme, we will arrive at the MDL criterion: 

( ) ( ) n
k

MDPkMDL k log
2

|log ˆ +−≈  (41) 

where n  is the number of training data points and k  is the number of parameters of the model class kM . 

This particular form of the MDL criterion is derived using a two-part coding scheme in which the model 

and the error are coded independently. The MDL principle selects the model class to minimize the sum of 

the description length of the model, which increases with model complexity, and the description length of 

the error, which decreases with model complexity. To apply the MDL principle, one needs one or more 

probabilistic model class and data. Then, the proposed model class(es) can be fitted to the data and 

compared using the description length. The model class corresponding to the shortest description length is 

chosen as the one that explains the data best. The suggestion of models and model classes for describing 

data lies beyond the principle. Model classes should be produced by using the creative imagination and 

engineering judgement of researchers. This principle is simply a selection tool that evaluates models and 

data and tells which model the best in terms of description length is. For the report, the MDL principle 

was used to select relevant frequency bands from PSD of the UGW signals described about. Having 

selected the features, we applied SVM and NNs to study their performance on a reduced set of features in 

comparison to the full set of features. Results are presented in Table 3. 

Analysis of Table 3 reveals that while feature selection could not improve the already perfect SVM 

classification rate, it made a dramatic difference for NN classification. The recognition accuracy 

improved to almost 99.8%, practically matching the performance of the LM algorithm, while the standard 

deviation was reduced to 0.9%. These results demonstrate that feature selection is a powerful technique 

for NN regularization and should be applied every time when consistency of classification is paramount. 
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Table 3. Performance of different ML technique with and without feature selection by MDL principle. 

Classification Method 
Average 

classification accuracy, % 
Standard Deviation of 

classification accuracy, % 
SVM, RBF kernel, full set of features 100 0 

SVM, RBF kernel, set of features selected by MDL 100 0 

NN with gradient descent training, full set of features 74.4 23.5 

NN with gradient descent training, set of features selected 
by MDL 

99.8 0.9 

 

There are other coding schemes that provide valid description lengths of data based on probabilistic 

model classes [31]. Those schemes have been found to outperform the penalized log-likelihood form of 

the MDL criterion (41) for some problems. The MDL criteria operates by code lengths and can be used to 

compare any type of model. Another advantage is that in the MDL framework, there is no need to assume 

anything about how the existing data are generated [31]. Although the MDL principle admits the use of 

prior information in the form of prior distributions, the main idea is to use available prior information for 

suggesting model classes that will be compared with the help of the MDL principle. We favor this 

approach because description length is correlated with prediction risk. This means that models 

corresponding to shorter descriptions give better predictions than models corresponding to longer 

descriptions [26]. 

For linear regression models, the MDL criterion was derived assuming a two-part code scheme and 

normally distributed noise ε  takes the form [31]: 

cIX'XcIR
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2

1
log

2
−++≈

 (42) 

where cR  stands for the penalized sum of squared errors ( ) c 'yyRc += ˆ,δ . The vector of regression 

coefficients  is calculated to minimize cR . The regularization parameter c  is chosen to minimize the 

code length (35) [31]. As we can see, the feature selection problem is linked to the selection of 

regularization parameter, which is discussed in the next section. 

3.5 Selection of Regularization Parameters for ML Algorithms 

Expression (6) demonstrates that the trade-off between fidelity to the data and fidelity to prior 

assumptions is controlled by regularization parameter , which needs to be selected to optimize the 

performance of a ML algorithm. 

There are two major approaches to regularization parameter selection: deterministic and stochastic. 

The stochastic approach exploits the statistical nature of the noise component in the response, whereas the 

deterministic approach completely ignores it. In either approach, there are methods that require different 
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types of input information for producing a proper value of the regularization parameter for a problem. 

Figure 17 shows one possible classification of the regularization parameter selection methods (RPSMs). 

The “Heuristic” and “Error Free” methods do not require an estimate of the noise level in the response; 

the others do. 

A Priori

 ~ (delta/rho)^(2/2mu+1)

A Posteriori

Morozov's DP

Heuristic

The L-curve

Deterministic Rules

Error Free

GCV

Correct Models

CL

Misspecification-resistant

RIC, ICP
ICOMP

With Noise Estimate Bayesian

Stochastic Rules

Regularization parameter selection rules

 

Figure 17. Classification of RPSMs. 

3.5.1 Deterministic RPSMs 

A priori RPSMs require, as the name implies, a priori information about the true solution and/or the 

true noise level in the response. Since neither is available in practical applications, especially when 

parameters have no physical interpretation, these methods are of little interest for practical 

implementations. They are important from the theoretical point of view because they establish optimal 

convergence rates. A regularization method is convergent when the error between the regularized solution 

obtained using this method and the true solution goes to zero as the noise in the response goes to zero. 

The convergence rates are useful in the theoretical analysis of the regularization methods and in 

comparing different RPSMs. RPSMs with faster convergence would provide more accurate solutions for 

a given noise level and, thus, are preferable. 

Many discrete pattern classification and ML problems can be reduced to the solution of a simple 

linear equation: 

ε+= XbY   (43) 
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where Y  is an 1×n  vector of noisy output signals of a system or process under consideration called the 

response, X  is an mn×  matrix representing n  observations or measurements of m  independent 

variables called the predictors, b  is a vector of m  parameters called the regression coefficients, and ε  is 

an unknown noise vector that represents the measurement error, the modeling error, and the true 

stochastic noise. In this report, we use formulation (43) to analyze different RPSMs. 

3.5.1.1 A priori RPSMs 

When the noise level, denoted as δ , is known, and for some 0>μ , ( ) wXXb T μ
= , where υ≤w  

(i.e., has a source representation), the regularization method is of optimal order with the following a 

priori RPSM (32): 

12

2

~
+μ

υ
δλ  (44) 

This result is for the deterministic setting. The source representation can be seen as a condition on the 

decay rate of the correlation coefficients iρ  between Y  and iu . For problem (43) to have a regularized 

solution, the correlation coefficients iρ  arranged in decreasing order of the singular values must decay 

faster than the singular values of nXX T / . For larger μ , this condition becomes more severe. Namely, 

the correlation coefficients must decay faster than the singular values raised to the μ42 +  power. If this 

is fulfilled for larger μ , the convergence of the regularized solution to the true one will be faster. 

For most real-world applications, neither μ  nor υ  is known, and, as a result, it is impossible to 

construct an a priori RPSM of optimal order. Therefore, several a posteriori RPSMs that depend on the 

data have been proposed. 

3.5.1.2 A posteriori RPSMs 

The most widely a posteriori RPSM used is Morozov’s [33] Discrepancy Principle (MDP). The 

regularization parameter value is chosen as a solution of the following equation: 

δλ ≤−YXb  (45) 

The regularization parameter λ  is chosen such that the corresponding residual (left-hand side of (45)) 

is less than or equal to the a priori specified bound (right-hand side) for the noise level in the response. 

Since a smaller λ  corresponds to less stable solutions, the λ  for which the residual equals the specified 

noise level is chosen. There is no reason to expect a residual less than the noise level. In modeling from 
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data, a residual less than the noise level in the response corresponds to overfitting, which is a term for 

learning noise in the training data. The regularization method with λ  chosen according to the MDP (45) 

is convergent and of optimal order [32,33]. 

To apply MDP, we must have a priori knowledge about the noise level in the response. Since the 

noise level is usually unknown, we use an estimate of the noise level. Unfortunately, MDP is very 

sensitive to an underestimation of the noise level. This limits its application to cases in which the noise 

level can be estimated with high fidelity [34]. An improved a posteriori method [32] outperforms MDP in 

that it is of optimal order for a wider range of μ  than MDP. 

A posteriori RPSMs require the noise level to be either known or reliably estimated. Such a noise 

level can be hard to obtain. An alternative approach to regularization parameter selection uses noise-level-

free RPSMs. Noise-level-free RPSMs are also referred to as heuristic RPSMs. Heuristic RPSMs provide a 

regularization parameter value without knowledge of the noise level. However, due to the result of 

Bakushinskii [36], a noise-level-free RPSM cannot provide a convergent regularization method. 

Therefore, heuristic RPSMs are nonconvergent. Despite that, in practical applications, heuristic RPSMs 

may demonstrate very good performance in reconstructing the solution of ill-posed problems [34]. 

The most widely used heuristic method is the L-curve method [34]. In this method, the residual norm 

is plotted versus the regularized solution norm and the regularization parameter value corresponding to 

the corner of the L-shape curve is chosen. The corner occurs where the curve has its maximum curvature. 

The L-curve method has been shown to be nonconvergent [37]. For some problems, it is extremely 

difficult to locate the corner; for others, the L-curve may have several corners. The L-curve method can 

also be used in the stochastic setting. 

3.5.2 Stochastic RPSMs 

In a stochastic setting, a distributional model of the noise component ε  in the response is specified. 

Usually, white Gaussian noise is assumed (i.e., the noise component has a multivariate normal 

distribution denoted as ( )nn IN 2,0~ σε , where ε  is a random noise n -vector whose components are 

independent and normally distributed with zero mean and common variance 2σ ). nI  denotes the nn×  

identity matrix. A RPSM is obtained so that it minimizes the mean predictive error estimated from the 

data. Therefore, all RPSMs in the stochastic setting use an estimator of the mean predictive error and 

select the regularization parameter value, which minimizes the corresponding estimator. 
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3.5.2.1 Generalized Cross Validation 

Probably the most widely used noise-level-free RPSM is Generalized Cross Validation (GCV) [35]. 

According to this method, the regularization parameter is chosen such that it minimizes the GCV 

function, as given by: 

( )
( )( )2
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=  (46) 

where ( ) TT XIXXXH
1−

+= λλ  is called the hat or projection matrix. GCV does not require prior 

knowledge of the noise level and works with the white Gaussian noise model for the noise component. 

GCV occasionally fails, presumably due to the presence of correlated noise [35]. GCV can also produce 

grossly under-regularized solutions [35]. 

3.5.2.2 Mallows' CL method 

Other widely used RPSMs are Mallows’ CL method [38] and the Unbiased Risk Estimator (URE) 

[38], which is similar to CL. CL is derived as an estimator of the mean predictive error, in which the noise 

level is treated as a nuisance parameter and the components iε  of the noise vector are assumed to be 

normally distributed with zero mean and common variance 2σ . CL is given by: 

( ) ( ) 2
22

2 σσλ λ
λ −+

−
= Htrace

nn

YXb
CL  (47) 

CL must be accompanied by either an a priori noise level as in the deterministic setting or by a 

reliable estimate of the noise level. CL is very sensitive to an underestimation of the noise level and may 

fail to provide a regularization parameter value corresponding to an admissible regularized solution. CL 

was derived for the white Gaussian noise case and, hence, may not work reliably if that assumption is 

violated. 

3.5.2.3 Information Criteria 

GCV and CL methods are defined for uncorrelated Gaussian noise case and cannot be easily extended 

to more realistic cases. In real applications, the distribution of noise can be non-Gaussian with non-zero 

values of skewness (i.e., asymmetric) and excess (i.e., narrower or wider than Gaussian). Data can contain 

outliers and can be generated by a mixture of distributions. The level or variance of the noise may not be 

stationary, but can vary. The noise may also be correlated. Finally, the statistical model of the noise can 
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be misspecified; as such, any results obtained without taking this into account can be invalid. None of the 

above methods can be generalized to any of these conditions. 

In order to deal with noise- and model-misspecification and construct misspecification-resistant 

RPSMs, the information approach that became widely used in statistical model selection due to the works 

of Akaike [39], Takeuchi [40], Murata [41], and others should be considered. 

The main advantage of the information approach is that it accounts for possible functional and 

distributional misspecifications of the models in a very natural way. While misspecification may not be an 

issue when solving integral equations, it plays a crucial role in engineering applications based on black-

box and data-driven techniques where the very notion of a true model is arguable and usually not 

discussed, though its existence is assumed. A similar situation arises with econometric models in which 

misspecification-detection and misspecification-resistant estimation have been extensively used in 

contrast to engineering. For a detailed treatment of misspecification in modeling and further references on 

misspecification testing, refer to White [42]. In these situations, methods that are consistent under 

possible misspecifications are valuable because they automatically guard against the unrealistic 

assumption of correct model specification. In this report, the information-based criteria, such as the 

Regularization Information Criterion (RIC) proposed by Shibata [43], was tested as a parameter selection 

method for NN. 

Criteria such as CL and RIC evaluate the generalization (or prediction) error using the training error 

and an additional term. This additional term penalizes the inaccuracy of parameter estimation and can be 

interpreted as the effective number of parameters of correctly specified models (for CL) or incorrectly 

specified models. 

With a limited number of observations, penalization of the number of parameters alone becomes 

inadequate. This additional term cannot be computed exactly because of the dependence on the unknown 

true distribution and should be estimated from the same data set. As a result, the selected regularization 

parameter value is often underestimated and produces grossly underregularized or inadmissible solutions. 

An additional penalization of the parameter estimation inaccuracy, taking into account the 

interdependencies between the parameter estimates as in the Information Complexity RPSM 

(ICOMPRPS) proposed in [44], can drastically reduce the risk of regularization parameter value 

underestimation and make such a choice more suitable for black-box modeling. Such an 

“overestimation,” or more precisely correction, of the inadequate penalization of inaccuracy is beneficial 

for engineering applications in which the regularization parameter value should be chosen automatically 

during model building, and there is no means for assessing the proper amount of regularization. For this 
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report, we tested four regularization parameter selection methods—GCV, CL, ICOMPRPS, and RIC—to 

select a NN regularization parameter. Results are presented in Table 4. 

Table 4. Performance of different regularization parameter selection methods. 

Regularization parameter selection method 
Average 

classification accuracy, % 
Standard Deviation of 

classification accuracy, % 
GCV 75.2 24.8 

CL 75.8 25.3 

RIC 76.0 25.1 

ICOMPRPS 74.3 23.6 

 

Analysis of Table 4 shows that while optimal regularization parameters improve the average accuracy 

of an NN classifier, none of the methods show a superior performance. These results demonstrate that the 

method of regularization is more important for a classifier’s performance than an optimally selected 

regularization parameter. 

3.6 Deep Learning NNs 

The deep learning paradigm is to use massive recurrent or feedforward NNs to discover latent 

dependences in large heterogeneous streams of plant data collected with different sensor modalities. Due 

to large volumes of sensory data collected at NPPs, the first principle models for the majority of the 

operational regimes at these plants are not feasible. The deep learning system can be calibrated on a 

plant’s data collected during normal operating conditions and subsequently used to detect faults on both 

system and component levels, such as faulty sensors, small leaks, and component degradation by 

comparing a system’s output with current sensor readings. The deep learning model can also be used for 

accurate and reliable determination of thermal power through perturbation of different input variables, 

thus improving a plant’s capacity factor. For this report, the deep learning NNs were used to classify 

signals recorded with high-resolution fiber optic sensors on different piping components. Practical 

development of deep learning models is a complex multidimensional optimization problem as it requires 

simultaneous optimization of a large number of parameters, such as a network’s architecture and weights, 

number of input variables, and input training patterns, as well as time lags and temporal variations. 

Development of deep learning framework for big data analytics will allow more efficient and safe 

operation of current LWRs. 

Deep learning methods have been successfully applied in such diverse fields as speech recognition, 

computer vision, drug discovery, and bioinformatics. The deep learning architecture shown in Figure 18 

uses multiple layers of simple nonlinear information processing units to learn intricate internal structures 

of stationary, as well as time-dependent, data sets. The fundamental difference of deep learning approach 

from conventional ML is the lack of feature extraction, feature representation, and feature selection steps. 
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Feature extraction is the most challenging and time-consuming step in developing conventional ML 

systems as it requires domain expertise and considerable creativity to extract and represent input 

information in the form of a multidimensional feature vector to present ML techniques for training or 

classification [45]. 

Contrary to this approach, the deep learning paradigm allows processing data in their raw form, 

thereby bypassing feature extraction, selection, and representation. This is accomplished by using many 

layers/levels of information-processing elements, each of which perform its own task. Each level 

processes and presents information at its level of increasing abstraction. For example, the lower level 

receives, processes, and represents raw data streams from temperature, pressure, flow, vibration, flux, and 

other sensors present in NPPs. This lowest level of abstraction eliminates outliers and missing values 

passing this pre-processed data to the next level, which detects linear correlation in the data. The third 

layer acts upon data obtained from the second layer and detects nonlinear dependencies and so on, thus 

creating a wholistic model of the underlying process. NPPs are highly complex systems with thousands of 

parameters that are monitored through different sensor modalities. Due to their complexity, the first 

principle models holistically describing the operation of an NPP in different regimes are not feasible; 

however, the data-driven approaches such as deep learning and big data analytics offers an alternative that 

can be implemented with currently available computational power. 

 

Figure 18. Deep representation learning architecture with five hidden layers. 

Deep representation learning is a complex optimization problem as it requires minimization of a cost 

function with a very large number of adjustable parameters. Deep representation learning usually deploys 

multilayer perceptron networks in supervised fashion to produce nonlinear mapping of training data into 

target variables by minimizing quadratic cost function. This minimization is performed by adjusting the 

parameters of a network, known as weights. In deep representation learning, there are hundreds of 

millions of weights. This minimization is typically accomplished through variations of a gradient decent 
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back-propagation algorithm in supervised manner. Due to the nonconvex nature of the optimization 

problem, there are multiple local minima, thus presenting a challenge of non-unique solutions. Besides 

the weights optimization, a network’s architecture can also be optimized by the number of intermediate 

layers and number of units in each layer. Also, the number of inputs in the bottom layer can be subject to 

optimization. Having been trained, the deep learning architectures are validated on some new previously 

unseen data to ensure that they can generalize well. Deep learning architectures may have up to 20 layers, 

and with such complexity, they can easily overfit the training data even with hundreds of millions of 

training examples. To avoid training data overfitting, constrained optimization is used when the cost 

function is augmented with a penalty term that typically penalizes a model’s complexity. This adds one 

more dimension to the optimization problem to be solved [45]. 

However, to be able to learn features automatically, a very large number of training data samples 

need to be presented to the network during the training phase. This is where the availability of big data 

sets becomes invaluable. All modern enterprises collect data; due to huge increases in computer power 

and storage volumes, the amount of this data is way beyond a human’s capabilities to analyze or simply 

visualize. NPPs collect data from thousands of sensors with sampling rates in kHz [45]. Recently, 

attempts were made to tap into this vast information source by the Electric Power Research Institute 

(EPRI) with their Fleet-Wide Prognostics and Health Management (FW-PHM) system; however, this 

approach is still based on traditional ML and pattern recognition techniques. 

EPRI’s system learns patterns of behavior that represent normal operational regimes of systems or 

equipment. When the currently observed patterns diverge from healthy patterns, the system reports the 

anomaly as an indicator of potential equipment degradation. However, for the system to operate, it 

requires a healthy signature database that is used to compare the current pattern against. 

A deep NN with a fixed structure represents a parametric family of mathematical functions 

{f( ; |  )}, which are parameterized by the weights of the matrices and bias terms involved in affine 

transformations. These functions are used as approximations to predict the response variables yi using the 

input data xi. The supervised learning process iteratively modifies the parameter (i.e., weights of the 

network) to minimize the approximation error E[ ] on a training data set (N records): 

 (48) 

If the non-linear functions in the structure of the network are differentiable almost everywhere, which 

is typically the case, then the gradient of the approximation error  can be easily derived using the 

chain rule for differentiation. The efficient procedure for calculating the gradient enables an application of 

the gradient decent optimization algorithms for network training. These algorithms iteratively update the 
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weights in the opposite direction of the gradient, until some termination criteria is satisfied. In the 

standard gradient decent method with the learning rate , the parameters  are updated using the gradient 

calculated on for the whole data set: 

 (49) 

Due to the nonconvex nature of the optimization problem, there are multiple local minima thus 

presenting a challenge of non-unique solutions. Besides the weights optimization, the network’s 

architecture also can be optimized, such as the number of intermediate layers and units in each layer. 

Also, the number of inputs in the bottom layer can be subject to optimization. Having been trained, the 

deep learning architectures are validated on some new previously unseen data to ensure they can 

generalize well. Deep learning architectures may have up to 20 layers, and with such complexity, they can 

easily overfit the training data even with hundreds of millions of training examples. 

To avoid training data overfitting, constrained optimization is used when the cost function is 

augmented with a penalty term, which typically penalizes a model’s complexity. This adds one more 

dimension to the optimization problem to be solved [46]. 

The standard gradient decent method is subject to a variety of numerical issues. Mainly, the iterations 

defined in equation (49) can be very slow, since this requires going over all of the records in the data set. 

The Stochastic Gradient Decent (SGD) partially alleviates these issues by approximating the gradient 

using a small random subset S of the training data, leading to a following update rule [47]: 

 (50) 

There are a number of extensions of the SGD method, which improve the convergence speed of the 

optimization and numerical stability (Nesterov’s Accelerated Gradient Decent [48], Adagrad [49], and 

Adam [50]). 
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4. PIPING MONITORING USING DISTRIBUTED FIBER ACOUSTIC 
SENSOR AND ARTIFICIAL INTELLIGENCE BIG DATA ANALYTICS 

4.1 High SNR Phase-Sensitive Distributed Acoustic Sensing 

Fiber-optic distributed acoustic sensing (DAS) with phase-sensitive optical time-domain 

reflectometry (φ-OTDR) is a powerful distributed sensing technology used to detect acoustic and 

vibration signatures for a wide array of applications. φ-OTDR offers high multiplexing capability using 

low-cost standard telecommunication fibers as a sensing medium. By using a narrow linewidth laser 

source and coherent detection, φ-OTDR systems can achieve highly sensitive acoustic detections with 

high-spatial resolutions. 

In a φ-OTDR system, the performance of the sensing dynamic range, spatial resolution, and 

sensitivity are governed by the system SNR, which is severely limited by the low intrinsic Rayleigh 

scattering coefficient of the optical fiber. Data processing techniques, such as moving average and 

wavelet transform, could improve an SNR to an φ-OTDR system, but with significant drawbacks leading 

to low frequency responses. The femtosecond laser fabrication is schematically shown in Figure 19. 

 

Figure 19. Schematic sketch of the Rayleigh Enhancement setup. (a) Optical Frequency Domain 
Reflectometry (OFDR) system (LUNA OBR 4600 with internal components—TLS: tunable laser source; 
FC: fiber coupler; PC: polarization controller; and PBS: polarizing beam splitter). (b) A schematic sketch 
of the ultrafast laser irradiation on optical fibers. 

The ultrafast laser system at the University of Pittsburgh consists of a Coherent MIRA-D Ti: sapphire 

seed oscillator and a RegA 9000 regenerative amplifier operating at 800 nm with a repetition rate of 

250 kHz. The pulse width was adjusted to 300-fs. A cylindrical telescope was used to shape the laser 

beam and control the shape of the focal volume. Oil immersed objectives (80×) were used to process 

cylindrical shaped fibers, as shown in the inset of Figure 19. The fiber being irradiated is also interrogated 

using a commercial OFDR interrogator (LUNA OBR4600). A roll-to-roll fiber handling setup is 

available, which allows continuous processing of the optical fiber. Through the optimization of laser pulse 
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width, pulse energy, and laser writing speed, nanograting can be formed inside the fiber core by the 

focused laser pulse to locally enhanced Rayleigh scattering with appropriate length and Rayleigh 

enhancements. 

Figure 20 shows a Rayleigh back-scattering profile along a 60-meter long sensing fiber (i.e., standard 

telecom fiber) enabled by fs-laser. Each section is 5-mm long with at least 30-dB back-scattering signal 

enhancement, which is >1000 times stronger than that of the pristine fiber shown in Figure 20. The 

Rayleigh enhancement is wavelength independent, which responds to all interrogation wavelength. The 

strength, location, and section length are all controllable, which can flexibly be realized by our laser 

processing system. The Rayleigh enhancement will dramatically improve SNR of φ-OTDR systems 

dramatically and make high-precision measurements possible. Phase changes induced by 

acoustic/vibration exerted on section fibers between two adjacent Rayleigh enhanced sections can be 

captured and demodulated using a φ-OTDR system developed by our research team. The demodulation 

system is schematically shown in Figure 21. 

 

Figure 20. Enhanced back-scattering in standard fibers enabled by fs-laser. 
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Figure 21. Schematic diagram of the -OTDR sensing system enhanced by microstructures. 
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A single wavelength light from a narrow-line laser is modulated to nanosecond pulses by an acoustic-

optical-modulator (AOM). The pulses are then amplified by an optical amplifier, an Erbium-doped fiber 

amplifier (EDFA), and launched into a sensing fiber. The reflected pulses from the sensing fiber, which 

are enhanced by 17 locally reflective points, return to a 3×3 coupler through a circulator. The pulse gets 

through the long and short arms of a 3×3 coupler, respectively, and are both reflected by faraday rotator 

mirrors (FRMs). If the path-match condition is satisfied, the 3×3 coupler and FRMs will comprise a 

balanced Michelson interferometer. The interference signals are collected by photodetectors. The 3×3 

demodulation method is used to obtain phase changes in the fiber. The three output signals have a 120° 

phase shift through the 3×3 coupler, which can be described as: 

 (51) 

where k(k=1,2,3) is the output number, D is the average of the output light intensity, and I0 is the peak 

intensity of interference signals; )()()t( tt ψφϕ += , where )(tφ  and )(tψ  are respectively phase shifted, 

caused by the signal to be detected and environmental noise. The output signal after the demodulation 

algorithm is: 

 (52) 

The phase changes, caused by vibration, are quantitatively detected for further analysis. The 

University of Pittsburgh research team has strong expertise in developing photonic instrumentation. The 

team has developed a preliminary φ-OTDR system based on a high-speed A/D data acquisition card and 

high-speed FPGA data processing system for real-time data processing. The prototype system is shown in 

Figure 22. 

 

Figure 22. Photograph of custom developed circuit boards for φ-OTDR system prototype. 
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4.2 Preliminary Results Obtained with High SNR Phase-Sensitive 
Distributed Acoustic Sensing 

Using the current femtosecond laser sensor fabrication method (see Figures 19 and 20) and the DAS 

prototype (see Figures 21 and 22), we performed preliminary distributed acoustic sensing experiments on 

the pipeline to explore the possibility of identifying defects on certain pipe locations, which were difficult 

to detect. The iron pipe used for these experiments is shown in Figure 6. The inner diameter (ID) of the 

pipe was 4-in. with a wall thickness of ½-in. It consists of three sections including two 5-ft. long straight 

sections connected by a 90° elbow. As was mentioned before, the traditional UGW detection scheme 

cannot effectively detect and identify defects in complex structures, such as elbows, due to their complex 

ultrasonic echo-features. However, the distributed fiber sensor technology can effectively enhance the 

ultrasonic inspection scheme. As shown in Figure 23, a 20-meter long fiber pipe with 14 Rayleigh 

enhanced points are inscribed using an ultrafast laser. These 14-Rayleigh enhanced points form seven 

sections (two enhanced points per section). This will enable us to perform ultrasonic measurement at 

multiple locations along the pipeline using a one-fiber/one-fiber feedthrough configuration, as is shown in 

Figure 23. 

 

Figure 23. (left) Schematic of pipeline monitoring of defects on elbow using distributed acoustic sensors, 
and (right) photograph of the experimental setup. 

To simulate corrosion defects, a 0.08” (2-mm) deep trench (at the deepest) was cut into the steel 

elbow, as is shown in Figure 23. Acoustic excitation was generated using a specialized acoustic hammer. 

The acoustic excitation and its frequencies can be changed using different hammer heads. In this 

experiment, four types of hammer heads were used including rubber, plastic, aluminium, and steel. To 

Acoustic 
excitation

Defects 
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simulate the different pipeline installation scenarios, acoustic signatures were collected on three different 

pipeline situations including: 

• Situation 1 – pipeline with good elbow 

• Situation 2 – pipeline with defected elbow 

• Situation 3 – pipeline with good elbow, but elbow was loosely connected to a straight pipe. 

The representative acoustic signatures detected by these three situations are shown in Figure 24. It is 

evident that all seven distributed acoustic sensors can detect an acoustic signal generated by the hammer. 

Through detailed analysis of the acoustic signal and its arrival times, it will provide more information on 

pipeline structural health along the entire pipeline with better spatial resolution than PZT-based acoustic 

sensors monitored in one location. This is particularly advantageous for structural health monitoring of 

complex pipe structures (e.g., elbow in this case). The multiple fiber sensors, as shown in Figure 23, can 

be interrogated using the one-fiber/one-fiber feedthrough method, greatly reducing wiring complexities 

and installation costs in the process. 

 

Figure 24. Acoustic signal measured by seven fiber sensors for three different situations. The signal was 
generated by an acoustic hammer using a rubber head. 

However, similar to PZT-based sensors, the acoustic signal detected by the fiber sensors, as shown in 

Figure 24, is highly susceptible to where fiber sensors are mounted on pipelines, their relative locations, 

and the particular acoustic modes generated by the hammers. This indeed will pose great challenges for 

data analytics using a deterministic signal processing approach. Further, distributed fiber sensors will 

generate a much larger set of data than that produced by PZT-based sensors installed in one location. In 

addition, corrosion-induced defects come in different forms, sizes, and severities. The acoustic signals 

they generate are subtle, which are showcased in Figure 7, while the acoustic signals generated by the 

three different scenarios above are almost undistinguishable. 

Given the challenges with data analysis, our research group performed our data analysis using an 

artificial intelligence big data approach. In this preliminary work, we use deep neural networks (DNNs) to 
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perform data analysis and feature identifications. Our focus in this preliminary work was the 

Convolutional Neural Network (CNN), which is a type of NN capable of extracting multiple local 

features from layer to layer. The usage of convolution in the CNN is especially effective to handle data 

collected from distributed sensors and reveal spatial dependencies of the data. The CNN has achieved 

significant success in image processing and other domains of artificial intelligence. 

Basic processing of the raw data makes it easier for the CNN to handle the data. A Fast Fourier 

transform (FFT) was used to obtain the frequency components of the data, giving the CNN direct access 

to the global properties of the signals. Meanwhile, by applying low-pass filtering to eliminate irrelevant 

high-frequency components and sync-filtering, which corresponds to zero-padding in the time-domain, it 

was possible to smooth the representation in the frequency domain. Figure 25 shows the architecture of 

the CNN. The input is the first 512 frequency components of all seven sensors extracted from FFT. The 

nonlinear activation function is via a rectified linear unit (ReLU). Max pooling is used between each layer 

to reduce the data in each channel. After each layer, the number of channels (i.e., the number of features 

extracted) increases. The output stage is a softmax classification layer fully connected to the previous 

layer. 

 

Figure 25. Architecture of CNN used for defect recognition. 

To use this ML algorithm to identify defects, we used an acoustic hammer to generate 50 sets of data 

on each situation as outlined before (e.g., normal, defected, loose elbow connections) by each hammer 

head. In total, 600 data sets were produced. These data were generated on different days at different times 

by different people. This was intentionally done to examine the efficacy of the CNN method. In this 

preliminary study, we used supervised learning for feature identification and extraction. Ten sets of data 

for each situation were used for training of the CNN. Table 5 shows the CNN pattern recognition results 

after the 10-set data was used for supervised learning. 
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Table 5. CNN classification results. 

 

 

Table 5 shows the identification accuracy using CNN for acoustic data generated by the four different 

hammer heads. The signal generated by the aluminium head achieves the highest accuracy of 94.29% to 

successfully identify the three situations (e.g., normal elbow, defected elbow, loose connection). The 

signal generated by the plastic and rubber hammer heads achieved slightly lower successful rates, 

probably due to the weaker signal. The lowest identification successful rate was found using a steel 

hammer head, probably due to a resonating issue produced by a steel hammer head. The results presented 

in Table 5 highlight success and good potential for integrating a distributed sensor and artificial 

intelligence data analytics approach. 
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5. CONCLUSIONS AND RECOMMENDATIONS 

The ICA algorithms seem to be a natural fit in separating corrosion defect signals from coherent noise 

in the context of temperature changes and constant frequency content of the defect signal. Due to 

interference, multiple GW sensors receive combined information from various sources. This creates 

observed signals that align very well with the fundamental ICA model, making ICA a logical choice for 

filtering GW data. However, currently available ICA algorithms have serous limitations when applied to 

real-world industrial data in that they only deal with linear mixtures and they require that the number of 

sources do not exceed the number of sensors. While reducing the time window available for processing 

will reduce the number of sources in that window, in practice, the number of sources is unknown. 

Practically, useful ICA algorithms should be able to deal with an unknown number of sources and 

nonlinear and convolutional mixtures. In future work, we plan to process data from axial sensors from the 

same data set and study the influence of the number of sensors on the quality of separation. Processing 

axial data from the same data set will provide an opportunity to work with more sources, since the 

number of axial sensors is higher. 

Because ICA is invariant to the ordering of the ICs, automatic algorithms will be needed to label ICs 

that can be attributed to noise, reflections from engineering features, and reflections from corrosion. Since 

ICA does not perform dimensionality reduction, all ICs initially have to be considered useful and their 

ranking needs to be performed based on some other criteria than variance. 

One of the benefits of having GW systems permanently installed is the ability to track defect growth 

by subtracting current reflections from some baseline reflections taken earlier. The results in this report 

show that ICA has the potential to improve SNR, thus making it a viable tool for tracking defect growth. 

In future work, we plan to apply ICA to baseline subtraction to investigate opportunities for defect 

development monitoring. The GW system measurements were in general consistent with the 

measurement provided by an UT system in terms of locating corrosion activity on the shell. However, the 

GW system was unable to differentiate defect growth during the monitoring period. 

Also, it would be beneficial to study the ability of ICA to deal with shadowing since it is one of the 

types of interference present in GW signals. 

The ICA technique is also only one of several possible techniques for processing GW monitoring 

data. A through comparison of different signal processing and pattern recognition techniques would help 

to elucidate when each method is most suitable. Such a comparison will also be a subject of future work. 

Many engineering problems are ill-posed. The failure to realize this fact can lead to unsuccessful 

attempts to build a data-driven method that is reliable and stable. An ill-posed problem is not solvable by 
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conventional methods because the assumptions under which the methods were derived are violated. For 

example, it is impossible to build a pattern classification system using the ordinary least squares (OLS) 

method. The OLS solution in the case of highly collinear predictors is extremely unstable and 

hypersensitive to small perturbations and particular realizations of the noise component. This is exactly 

the opposite property a data-driven method should possess to be of a practical value. 

Results presented in this report demonstrate that to be practically useful in an online monitoring 

system, NN needs to be properly regularized either by training or variable selections. Our findings 

indicate that the most promising methods of regularization for backpropagation NN are the LM algorithm 

method, Bayesian regularization, and cross-validation. These three methods produced the highest 

classification accuracy with the lowest variance. In addition, variable selection proved to be a viable 

alternative to these methods as it matches accuracy and consistency of the above-mentioned techniques. 

Variable selection, however, requires an additional step when developing a pattern recognition system, 

which may present a problem if computational resources are not available. The selection of the 

regularization parameter proved to have a minor influence on the performance of the pattern recognition 

system; as such, any of the tested methods can be used in practice. On the other hand, SVM demonstrated 

an outstanding performance in terms of both classification accuracy and stability. SVM was the only 

method to achieve 100% classification accuracy regardless of the training patterns used. It should be 

noted that SVM does not use random initialization for the optimization problem, which partly explains its 

perfect stability. However, prior to training, SVM requires the selection of kernels, which may lead to 

some variability in classification results. The SVM’s stability with respect to kernel selection will be a 

subject of future studies. Overall, SVM should be a method of choice for online pattern recognition 

systems due to its classification performance and consistency. 

For fiber optic high-resolution sensors, the deep learning CNN produced results that are comparable 

with shallow NN classification accuracy; however, they do not match the accuracy of SVM. Based on the 

results obtained in these studies, advances signal processing and data analytics have the potential to 

significantly improve the detection capabilities of piping monitoring systems in NPPs. 
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